Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 458: 131975, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37399722

RESUMEN

The rate of decommissioning of global oil and gas production facilities will accelerate over coming decades, as mature developments reach the end of use, and consumers transition towards renewable energy. Decommissioning strategies should include thorough environmental risk assessments which consider contaminants which are known to be present in oil and gas systems. Mercury (Hg) is a global pollutant that occurs naturally in oil and gas reservoirs. However, knowledge of Hg contamination in transmission pipelines and process equipment is limited. We investigated the potential for accumulation of Hg0 within production facilities, particularly those transporting gases, by considering the deposition of Hg onto steel surfaces from the gas phase. Following incubation experiments in a Hg saturated atmosphere; fresh API 5L-X65 and L80-13Cr steels were found to adsorb 1.4 × 10-5 ± 0.04 × 10-5 and 1.1 × 10-5 ± 0.04 × 10-5 g m-2, respectively, while corroded samples of the same steels adsorbed 0.12 ± 0.01 and 0.83 ± 0.02 g m-2; an increase in adsorbed mercury by four orders of magnitude. The association between surface corrosion and Hg was demonstrated by laser ablation ICPMS. The levels of Hg measured on the corroded steel surfaces indicates a potential environmental risk; therefore, mercury speciation (including the presence of ß-HgS, not considered in this study), concentrations and cleaning methods should be considered when developing oil and gas decommissioning strategies.

2.
Pharmaceutics ; 14(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36145577

RESUMEN

microRNAs represent promising drugs to treat and prevent several diseases, such as diabetes mellitus. microRNA delivery brings many obstacles to overcome, and one strategy to bypass them is the manufacturing of self-assembled microRNA protein nanoparticles. In this work, a microRNA was combined with the cell-penetrating peptide protamine, forming so-called proticles. Previous studies demonstrated a lack of microRNA dissociation from proticles. Therefore, the goal of this study was to show the success of functionalizing binary proticles with citric acid in order to reduce the binding strength between the microRNA and protamine and further enable sufficient dissociation. Thus, we outline the importance of the present protons provided by the acid in influencing colloidal stability, achieving a constant particle size, and monodispersing the particle size distribution. The use of citric acid also provoked an increase in drug loading. Against all expectations, the AFM investigations demonstrated that our nanoparticles were loose complexes mainly consisting of water, and the addition of citric acid led to a change in shape. Moreover, a successful reduction in binding affinity and nanoparticulate stability are highlighted. Low cellular toxicity and a constant cellular uptake are demonstrated, and as uptake routes, active and passive pathways are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...